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Envelope equations are derived for the convection rolls in the Rayleigh–Bénard–
Poiseuille system, taking into account both their slow streamwise and transverse
variations. At finite O(1) Reynolds numbers, the stability of finite-amplitude
longitudinal roll patterns is accessible to analysis in a moving frame of reference and
stability is predicted provided a generalized Eckhaus criterion is satisfied. At lower
Reynolds numbers, the analysis allows the analytical determination of the Green
function for arbitrary orientations of the instability pattern. It clarifies previous
results concerning the purely convective nature of all modes of instability except
transverse rolls (for which a convective–absolute transition exists), as soon as the
Reynolds number is non-zero.

1. Introduction
The destabilization of a motionless horizontal fluid layer heated from below, the

so-called Rayleigh–Bénard (RB) problem, has received considerable attention in the
past century since the original observations of Bénard (1900) and may now be
considered well understood. The linear stability analysis of an infinitely extended,
uniformly heated layer developed by Rayleigh (1916), generalized to the case of a
no-slip condition at the horizontal boundaries by Pellew & Southwell (1940), was
always found to give a satisfactory prediction of the critical temperature difference
for the appearance of convective cells in large-aspect-ratio containers (see Silveston
1958; Koschmieder & Pallas 1974). An explanation for such an agreement is provided
by the coincidence of the threshold for monotonic stability, as predicted by an
energy method (Sorokin 1953, 1954; Joseph 1976), with the threshold for linear
instability which excludes any kind of subcritical bifurcation. In addition, its absolute
nature in the sense of Briggs (1964) ensures that the instability invades the whole
fluid layer, once the temperature difference between top and bottom boundary has
reached a supercritical value. The question of the convection pattern selection, which
remains unanswered at the linear stage, was first explored by means of amplitude
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equations, often termed Stuart–Landau equations after the rigorous derivation by
Stuart (1960) of the Landau (1944) conjecture in parallel flows. Generalizing the
previous work of Malkus & Veronis (1958), Schlüter, Lortz & Busse (1965) showed
that the stable roll pattern for convection between rigid walls successfully corresponds
to the usually observed pattern, while hexagonal cells or still more exotic patterns may
be encountered owing to temperature dependence of the viscosity, for instance, as in
Palm (1960) (see White 1988, for experimental evidence of the zoology of possible
patterns). In this context, geometrical constraints imposed by the finite extent of the
experimental apparatus have a strong influence on the final orientation and the local
details of the pattern. Allowing slow spatial variations in the original multiple scale
analysis, Newell & Whitehead (1969) and Segel (1969) used the envelope equation
formalism to predict the spatial modulation of the amplitude, in particular, the
preferential alignment of rolls parallel to the shorter side of a rectangular ‘box’.

Considering now cases where a mean shear flow, e.g. a Poiseuille flow in the present
paper, is imposed on the differentially heated fluid layer, the destabilization scenario
becomes more complicated. The linear stability analysis of Gage & Reid (1968)
has shown that the loss of horizontal isotropy induces a dependency of the critical
temperature difference, i.e. the critical Rayleigh number R(ϕ)

c , on the roll orientation
ϕ, where ϕ is the angle between the horizontal wavevector and the streamwise
direction. For longitudinal rolls (LR), i.e. rolls with their axes aligned with the
streamwise direction, R(π/2)

c is easily found to be independent of the Reynolds number
R, characterizing the mean flow, while for any other direction, R(ϕ)

c is found to be an
increasing function of R†. Consequently, longitudinal rolls were always considered to
be the preferred pattern in Rayleigh–Bénard–Poiseuille convection (RBP convection)
and, indeed, were repeatedly observed in early experiments (Akiyama, Hwang &
Cheng 1971; Ostrach & Kamotani 1975; Fukui, Nakajima & Hueda 1983). However,
the existence of travelling transverse roll (TR) convection in some regions of the R–R

parameter space is now well established experimentally (Luijkx, Platten & Legros
1981; Ouazzani et al. 1989; 1990, 1995; Schröder & Bühler 1995; Yu et al. 1997;
Chang, Yu & Lin 1997). This pattern has also been obtained from ‘direct’ numerical
simulations of the full set of incompressible Navier–Stokes equations under the usual
Boussinesq approximations (see, for instance, Schröder & Bühler 1995; Chen &
Lavine 1996). TR convection is thus a possible state of the RBP system, but it is not
obvious why it can appear in spite of the lower instability threshold of LR convection.
It seems that TRs are preferentially observed at low values of R (on which this paper
will concentrate).

To illustrate the added difficulties of the RBP problem as compared to the pure
Rayleigh–Bénard case, we have to go a step beyond the linear stability analysis.
Following the original work of Richter (1973), Kelly (1994) proposed modeling the
problem by means of two real amplitude equations of the kind:

dA⊥

dt
= (r − ρ2)A⊥ − A3

⊥ − (1 + β2)A⊥A2
‖, (1.1a)

dA‖

dt
= rA‖ − A3

‖ − (1 + β2)A‖A
2
⊥, (1.1b)

† Strictly speaking, the analysis of Gage & Reid (1968) is only valid when the Prandtl number
is unity. Later studies suggested that the results are relevant for arbitrary Prandtl numbers, see for
instance Müller (1990); Müller, Lücke & Kamps (1992).
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Figure 1. Phase-space trajectories of (1.1) for different values of r . (a) r � 0, the origin is
the only sink. (b) 0< r � ρ2, the origin is a saddle point and the point A⊥ = 0, A‖ = r1/2

corresponding to LRs becomes a sink. (c) ρ2 < r � ρ2(1+β−2), the origin is a source, the ‘pure
LR point’ remains a sink and a saddle point emerges on the TR-axis. (d) r >ρ2(1 + β−2), the
saddle point on the TR-axis becomes a sink while a new saddle point, corresponding to a
combination of TRs and LRs, emerges.

where A⊥ and A‖ are the amplitudes of the transverse and longitudinal rolls,
respectively, while r and ρ are, up to real multiplicative constants, equal to
ε−2(R − R(π/2)

c ) and ε−1R, respectively, with ε being a small expansion parameter. The
real coefficient β is directly related to the interaction coefficient appearing in the RB
problem (see Schlüter et al. 1965, for a quantitative evaluation) since the mean shear
does not influence the nonlinear interactions at this order (note that β depends on
the Prandtl number P ). The main features of system (1.1) are shown in figure 1. For
r � 0, A⊥ = A‖ = 0 is the stable solution. As r becomes positive, this solution becomes
unstable and pure LRs emerge as a stable solution. TRs appear when r > ρ2, but
are unstable as long as r < ρ2(1 + β−2). Finally, for r � ρ2(1 + β−2), both LRs and
TRs are stable with the final state strongly dependent on the initial condition. This
state always consists of either LRs or TRs since a combined pattern with A⊥ �= 0
and A‖ �= 0 is unstable as in the case of the pure RB problem. Hence, nonlinear
mechanisms increase the difference between the (linear) critical Rayleigh numbers
for LRs and TRs, but nevertheless allow stable TR convection for sufficiently large
values of R. The preceding analysis remains valid for an arbitrary orientation ϕ of
the roll with amplitude A(ϕ), provided ρ is replaced by ρ cos ϕ and the appropriate
value of β is used.
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The dependence of the final orientation of the roll pattern on the initial condition
in the spatially homogeneous problem modelled by amplitude equations (1.1) may
be roughly considered to be the temporal equivalent of the dependence of the final
pattern on spatial constraints and inhomogeneities in a real laboratory experiment.
The presence of lateral walls, as well as system in and outlet and spatial imperfections
of the temperature profile on the upper and lower plates, for instance, are known
to influence the pattern selection strongly. As in the RB case, such effects may be
modelled by allowing slow spatial variations of the amplitude (and possibly of one
or more parameters) in the multiple scale analysis used to derive envelope equations.
Such an analysis has been performed by Walton (1985) for an RBP system in which
a streamwise linear variation of the Rayleigh number is allowed. Walton’s rigorous
derivation of envelope equations highlights the main difficulties inherent in this
approach which arise from the difference of the relevant scalings for different roll
orientations. This is partly related to the convective nature of the RBP instability at
marginality and the possible, orientation-dependent transition to absolute instability
for supercritical Rayleigh numbers (Müller et al. 1992; Carrière & Monkewitz 1999).
It is clear that a careful analysis of the convective–absolute nature of the instability
patterns is required since, as originally outlined by Müller et al. (1992), it may play an
important role in the competition between LRs and TRs. In the following, we extend
the analysis of Walton (1985) by including slow variations of the amplitude in the
transverse direction and more general variations of the Rayleigh number. According
to our previous work (see Carrière & Monkewitz 1999), transition from convective to
absolute instability only involves TRs. In contrast to this previous study, in which the
stability problem was treated numerically, we are seeking here analytical solutions.
In § 2, we derive envelope equation describing LRs for O(1) Reynolds numbers and
examine their stability properties. In § 3, analytical solutions are developed in the
limit of small Reynolds numbers which allow an explicit determination of the Green
function and hence are particularly useful for understanding the different behaviour
of LRs and TRs. They also provide the starting point for a global mode analysis
with two directions of wave propagation, presented in Part 2 (Martinand, Carrière &
Monkewitz 2004). A general discussion of the results is proposed in § 4.

2. Finite O(1) Reynolds number
The fluid layer, of depth h in the vertical z-direction, is assumed to be of infinite

extent in the horizontal x- and y-directions and subjected to a pressure gradient in
the x-direction so that a mean Poiseuille flow is established with non-dimensional
velocity and pressure fields

Up = Ũp(z) ex = (1 − 4z2) ex, (2.1a)

Πp = − 8

R
x + const. (2.1b)

In (2.1), the Reynolds number R is defined as

R =
Umh

ν
, (2.2)

where Um is the maximum of the Poiseuille velocity profile and ν is the kinematic
viscosity of the fluid. Without loss of generality, the temperature of the upper wall is
assumed to be at a constant value T∗r relative to which the temperature in the fluid
is defined (here and in the following, ∗ denotes a dimensional quantity). Temperature
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differences are scaled with respect to the quantity νK/(gαh3) with g the acceleration
due to gravity, α the thermal expansion coefficient and K the thermal diffusivity of
the fluid. We assume that the (dimensional) lower wall temperature T +

∗ departs only
slightly from the critical temperature for linear instability in the absence of through-
flow. Introducing the critical Rayleigh number R(π/2)

c for LRs (and the RB problem)
and a small parameter ε, we can write

T +
∗ = T∗r +

νκ

gαh3

(
R(π/2)

c + ε2R2

)
, (2.3)

where the small departure from criticality ε2R2 can depend slowly on the x- and
y-coordinates. For an O(1) Reynolds number, as considered in this section, the
appropriate scaling for the slow spatial coordinates is

x1 = εx, (2.4a)

y1 = εy. (2.4b)

In addition, the following successively slower time scales are introduced:

t1 = εt, t2 = ε2t. (2.5)

To facilitate the distinction between different scalings, we denote the original O(1)
spatial and time coordinates x, y and t by x0, y0 and t0.

As usual, the non-dimensional velocity U , pressure Π and temperature T fields are
expanded as

U = Up + εu1 + ε2u2 + ε3u3 + h.o.t., (2.6a)

Π = Πp + Π0 + εp1 + ε2p2 + ε3p3 + h.o.t., (2.6b)

T = T0 + εθ1 + ε2θ2 + ε3θ3 + h.o.t., (2.6c)

with

T0 = R(π/2)
c

(
1
2

− z
)
, Π0 =

R(π/2)
c

2
z(1 − z) + const. (2.7)

Details of the derivation and the solution of the successive problems are given in
Appendix A. According to the linear stability analysis, for an O(1) Reynolds number,
only LRs are unstable since the Rayleigh number is R(π/2)

c at leading order. The
solution v1 = (p1, u1, θ1)

T may thus be written

v1 = A exp(ikcy0)V 1(z) + c.c., (2.8)

with V 1 given in Appendix A and c.c. denoting the complex conjugate. The amplitude
A in (2.8) is an implicit function of the slow variables A= A(x1, y1, t1, t2).

As detailed in Appendix A, a non-trivial equation is obtained from the solvability
condition of the problem at O(ε2) owing to the convective nature of the instability:

∂t1A + R c ∂x1
A = 0. (2.9)

As recognized early on by Stewartson & Stuart (1971), the solution of (2.9) is a wave
propagating at group velocity R c:

A = A(χ1, y1, t2) with χ1 = x1 − R c t1. (2.10)

Our numerical evaluation of c gives:

c = P
0.4718 + 1.375P

0.8012 + 1.566P
, (2.11)
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in agreement with the results of Walton (1985) so that R c is strictly positive except
in the limits R → 0 or P → 0. Thus, the instability remains convective and, as a
consequence, the next order approximation describes the evolution of the wave in the
frame of reference moving at the group velocity. It is noteworthy that this envelope
formalism cannot capture a transition from convective to absolute instability, even
if it existed, for an O(1) Reynolds number since it would involve at least an O(1)
difference between the critical Rayleigh number for convective instability and the
Rayleigh number for convective–absolute transition (the ansatz (2.3) only allows an
O(ε2) difference). This is in full agreement with our previous analysis of this problem
where no convective–absolute transition was detected for LRs for R = O(1) and
physically relevant values of the Rayleigh number (Carrière & Monkewitz 1999).

At the next order, the following envelope equation for the complex amplitude A is
obtained

τ ∂t2A = µ R2 A + αR2 ∂2
χ1

A + iηR ∂χ1
∂y1

A + ξ ∂2
y1

A − λA2A. (2.12)

The numerical values for the various constants appearing in equation (2.12) are (cf.
Appendix A):

τ = P −1 (0.8012 + 1.566P ), (2.13a)

µ = 0.018, (2.13b)

α = 10−2(τP )−2(0.004359 + 0.004804P + 0.4436P 2 + 0.0735P 3 + 0.0849P 4), (2.13c)

η = (τP )−1(0.05523 + 0.01103P + 0.04263P 2), (2.13d)

ξ = 4.555. (2.13e)

λ = 0.7753 − 0.005229

P
+

0.009228

P 2
. (2.13f)

The Landau constant λ is taken from Schlüter et al. (1965). All these coefficients are
strictly positive for any non-zero value of the Prandtl number. By the simple change
of variables:

t2 → τ−1t2, A → λ1/2A, χ1 → R−1α−1/2χ1, y1 → ξ−1/2y1, η → (αξ )−1/2η, (2.14)

and by setting

r = µR2, (2.15)

(2.12) is reduced to the generic form:

∂t2 A = r A + ∂2
χ1

A + iη ∂χ1
∂y1

A + ∂2
y1

A − A2A, (2.16)

where the influence of the Reynolds number is now hidden in the redefinition of χ1.
Equation (2.12) is relevant for O(1) values of R sufficiently below the critical Reynolds
number for Tollmien–Schlichting type instabilities where, according to Fujimura &
Kelly (1995), an additional equation would have to be introduced.

Equation (2.16) has the classical phase winding solutions

A0 = (r − a2 − b2)1/2exp(i (aχ1 + by1 − ηabt2 + φ0)) , (2.17)

with wavenumbers a and b in the directions of χ1 and y1 and φ0 an arbitrary constant
phase, provided r > a2 + b2. The linear stability of such a solution is investigated by
adding a small perturbation B to the solution A0:

A = A0 + B (χ1, y1, t2) exp(i (aχ1 + by1 − ηabt2 + φ0)) . (2.18)
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The equation for B , linearized around A0, is obtained as

∂t2B = −(r − a2 − b2)(B + B) + (−ηb + 2ia) ∂χ1
B + (−ηa + 2ib) ∂y1

B

+ ∂2
χ1

B + iγ ∂2
χ1

∂y1
B + ∂2

y1
B. (2.19)

With the ansatz

B = B1 exp(i(a′χ1 + b′y1 − ω′t2)) + B2 exp(−i(a′χ1 + b′y1 − ω′t2)), (2.20)

where B1 and B2 are two complex constants, we obtain a dispersion relation which is
quadratic in ω′ and yields the eigenvalues

ω′
± = σqk′ − i(r ′ + q2) ± i(r ′2 + q2(2k′ζ + iη′q)2)−1/2. (2.21)

In (2.21), the following abbreviations have been introduced for convenience:

k′2 = a2 + b2, r ′ = r − k′2, q2 = a′2 + b′2, η′ = ηq−2a′b′,

ζ = (k′q)−1(aa′ + bb′), σ = η(k′q)−1(ab′ + ba′).

}
(2.22)

The root ω′
− of (2.21) has an imaginary part which remains negative since A0 exists

only for r ′ > 0. For the phase winding solution to be stable, Im(ω′
+) has to be negative

as well, which is the case if the real part of the square root in (2.21) is smaller than
r ′ − q2 . After some algebra, this condition may be expressed as:

q2[(1 + η′2)q6 + 2(r ′ + (r ′ − 2k′2ζ 2)(1 + η′2))q4

+ (r ′2(1 + η′2) + 4r ′(r ′ − 2k′2ζ 2))q2 + 2r ′2(r ′ − 2k′2ζ 2)] > 0. (2.23)

Clearly, the coefficients of the polynomial in q2 are positive as long as r ′ > 2k′2ζ 2.
On the other hand, when r ′ < 2k′2ζ 2 the last coefficient is negative, implying negative
values of the polynomial in some regions around q = 0. In terms of the original r ,
phase winding solutions are thus stable if r > (1 + 2ζ 2)k′2. Since ζ is the cosine of the
angle between the wavevector of the phase winding solution and of the perturbation,
the most restrictive condition is obtained for ζ = 1, for which the Eckhaus criterion
is recovered:

k′2 < 1
3
r. (2.24)

This simply means that the most dangerous instability of a given phase winding
solution of (2.16) has the same wavevector orientation as the solution itself.

Provided (2.24) is satisfied, the envelope equation (2.16) thus predicts the existence of
stable longitudinal convection rolls, which may be slowly modulated in the horizontal
direction, above the RB threshold of R(π/2)

c ≈ 1707. This result fully agrees with the
known experimental observations at moderately large Reynolds numbers. Considering
that equation (2.16) is only valid in a moving frame of reference, the temporal
evolution in (2.16) mimics the spatial evolution (amplification) of finite-amplitude
inlet perturbations into LRs. This naturally leads to the question of what happens
when other kinds of perturbations, more specifically TRs, are also amplified. This
question implies that the critical Rayleigh number is of the same order for all
wavevector orientation, meaning that, in the present formalism, the analysis must be
restricted to small Reynolds numbers. This is the subject of the following section.
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3. Envelope equations for infinitesimal R
3.1. Envelope equations for R = O(ε3/2)

The multiple scale analysis must be modified when considering values of R of the
order of some power of the small parameter ε. As already remarked by Walton (1985),
two different scalings for R, corresponding to different behaviour of the system, can
be chosen. The very low Reynolds-number limit may be investigated by setting

R = ε3/2R3/2. (3.1)

With this scaling, the O(ε) problem reduces to the Rayleigh–Bénard problem in
the absence of mean through-flow. Hence, no mode orientation is selected at the
linear stage and the analysis may be performed for a roll of arbitrary orientation ϕ,
recalling that ϕ has been defined as the angle between the horizontal wavevector and
the streamwise direction. It is then more convenient to use x ′ and y ′ axes normal and
tangential to the roll axis, respectively. The relevant scalings for these coordinates are

x ′
1 = εx ′, y ′

1/2 = ε1/2y ′, (3.2)

while the appropriate time scales are

t3/2 = ε3/2t, t2 = ε2t. (3.3)

At first order, the roll solution v1,ϕ =(p1,ϕ, u1,ϕ, θ1,ϕ)
T is given by

v1,ϕ = Aϕ exp
(
ikc

(
x ′

0 − R3/2 c cos ϕ t3/2

))
V 1,ϕ(z) + c.c., (3.4)

with c given by (2.11) and Aϕ = Aϕ(x
′
1, y

′
1/2, t2). Note that, as expected, roll modes (ex-

cept LRs) are travelling waves in the presence of a mean shear, with phase speed pro-
portional to R and to cos ϕ (see Müller 1990). The analysis detailed in Appendix B.1
yields the envelope equation for Aϕ:

τ∂t2Aϕ = µR2Aϕ + τ R3,2 c sin ϕ ∂y ′
1/2

Aϕ + ξ
(
∂x ′

1
+ (2ikc)

−1∂2
y ′

1/2

)2
Aϕ − λA2

ϕAϕ, (3.5)

which is just the Newell–Whitehead–Segel equation (see Newell & Whitehead 1969;
Segel 1969) obtained for zero through-flow with an additional convection term
proportional to the Reynolds number times the sine of the angle between the
wavevector and the streamwise direction. The definition of the various coefficients
appearing in (3.5) is the same as in the previous section. Thus, (3.5) may be simplified
by the following change of variables:

t2 → τ−1t2, Aϕ → λ1/2Aϕ, x ′
1 → ξ−1/2x ′

1, y ′
1/2 →

(
2kc ξ−1/2

)1/2
y ′

1/2. (3.6)

Setting furthermore

c̃ = τc
(

1
2
αkc ξ 1/2

)−1/2
, ρ = α1/2kcR3/2, (3.7)

where the coefficient α has been introduced for coherence with the future
equation (3.17), equation (3.5) becomes

∂t2Aϕ = rAϕ + ρc̃ sin ϕ ∂y ′
1/2

Aϕ +
(
∂x ′

1
− i∂2

y ′
1/2

)2
Aϕ − A2

ϕAϕ, (3.8)

with r as defined by (2.15).
Since, in the local stability analysis of (3.8), the additional convective term only

contributes to the oscillatory part of the instability mode, the critical values for local
instability are the same as for the Newell–Whitehead–Segel equation. For the analysis
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of the nature of the instability, convective or absolute, it is convenient to go back to
the Green function rather than trying to directly apply the Briggs (1964) criterion (see
Brevdo 1991; Carrière & Monkewitz 1999, for its application in the case of two wave
propagation directions). After successive Fourier transforms in the y ′

1/2 (wavenumber
b), x ′

1 (wavenumber a) and t2 (frequency −ω) directions, the response of the linear
part of (3.8) to an impulse δ(x ′

1)δ(y
′
1/2)δ(t2) is easily found to be

ˆ̂
Ĝ(a, b, ω) = (−iω − r − ibρc̃ sin ϕ + (a + b2)2)−1. (3.9)

The inverse Fourier transform in time is performed, as usual, along a contour in the
complex ω-plane which is a straight line parallel to the real axis located above all the
singularities (i.e. such that Im(ω) > r) to satisfy the causality condition. Closing the
contour in the lower ω-plane and evaluating residues, we obtain for t2 > 0

ˆ̂
G(a, b, t2) = − exp((r − ibρc̃ sin ϕ + (a + b2)2)t2). (3.10)

Since the argument of the exponential is a quadratic form in a, the inverse Fourier

transform of
ˆ̂
G in the a-direction can be performed analytically (see Champeney

1973, p. 22):

Ĝ(x ′
1, b, t2) = − 1

2(πt2)1/2
exp

[(
r −

(
1

2

x ′
1

t2

)2

+ ibρc̃ sin ϕ − ib2 x ′
1

t2

)
t2

]
. (3.11)

Finally, the Green function in physical space is obtained by inverting the Fourier
transform in the b-direction (Champeney 1973, p. 38) with the result

G(x ′
1, y

′
1/2, t2) = −exp(−iπ/4)

4πt2

(
x ′

1

t2

)−1/2

exp

[(
r −

(
1

2

x ′
1

t2

)2
)

t2

]

× exp

[
i

(
4
x ′

1

t2

)−1 (
ρc̃ sin ϕ +

y ′
1/2

t2

)2

t2

]
. (3.12)

The convective–absolute nature of the instability is determined by the limiting
behaviour of G(x ′

1, y
′
1/2, t2) as t2 → ∞ along the particular ray x ′

1/t2 = y ′
1/2/t2 = 0.

Considering the clearly singular limit x ′
1/t2 → 0 in (3.12) yields

lim
x ′

1/t2→0
G(x ′

1, y
′
1/2, t2) = − 1

2π1/2t2
exp(rt2) δ

(
t
1/2
2

(
ρc̃ sin ϕ +

y ′
1/2

t2

))
. (3.13)

Hence, along the ray x ′
1/t2 = 0, G is a Dirac delta function moving at velocity

−ρc̃ sin ϕ along the y ′
1/2-direction. Thus, the impulse response is 0 along the ray

x ′
1/t2 = y ′

1/2/t2 = 0 for all modes except TRs, since in this case sin ϕ =0 and the delta
function remains stationary while experiencing unbounded growth in t2. The different
possibilities are sketched in figure 2.

Therefore, the key result obtained from the envelope equation (3.8) is that, in the
presence of even a weak mean Poiseuille through-flow, all instability modes except
transverse rolls are convectively unstable, in agreement with our earlier findings
(Carrière & Monkewitz 1999). Further investigations based on (3.8) therefore do not
appear to be of interest and we seek further insight into the problem by increasing R

to O(ε) as detailed in the next subsection.
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Figure 2. Sketch of the impulse response for R = O(ε3/2). Only the response along the ray
x ′

1/t2 = 0 is represented, where the Dirac delta function is symbolized by a vertical arrow.
(a) Definition of the x ′- and y ′-directions. (b) Impulse response for arbitrary ϕ. (c) ϕ = 0 (TRs).
(d) ϕ = π/2 (LRs).

3.2. Envelope equations for R =O(ε)

The Reynolds number is increased by modifying (3.1) to

R = εR1, (3.14)

which requires the introduction of the additional time scale t1 = εt in order to allow
rolls to travel at speeds of O(R). The oscillatory behaviour of rolls is thus promoted
to the time scale t1:

v′
1,ϕ = Aϕ exp(ikc(x

′
0 − R1 c cosϕ t1))V 1,ϕ(z) + c.c. (3.15)

As detailed in Appendix B.2, the solvability condition at O(ε5/2) implies that (cf. the
previous subsection for the justification of the frame of reference υ ′

1/2)

Aϕ = Aϕ(x
′
1, υ

′
1/2, t2) with υ ′

1/2 = y ′
1/2 + R1c sin ϕt3/2. (3.16)

This leads at the next order in ε to the envelope equation

τ∂t2Aϕ =
(
µR2 − αR2

1k
2
c cos2 ϕ

)
Aϕ − R1(τ c + kcη) cos ϕ ∂x ′

1
Aϕ

+ 1
2
iR1η cos ϕ ∂2

υ ′
1/2

Aϕ + ξ
(
∂x ′

1
+ (2ikc)

−1∂2
υ ′

1/2

)2
Aϕ − λA2

ϕAϕ, (3.17)
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which describes the spatio-temporal behaviour of Aϕ in a frame of reference moving
at the group velocity −R1c sin ϕ along the y ′

1/2-direction. With the change of variables
(3.6), the redefinitions

c → τc k−1
c (αξ )−1/2, η → (αξ )−1/2η, ρ = α1/2kcR1, (3.18)

and r as defined by (2.15), (3.17) may be rewritten as

∂t2Aϕ = (r − ρ2 cos2 ϕ)Aϕ − ρ(c + η) cos ϕ ∂x ′
1
Aϕ + iρη cosϕ ∂2

υ ′
1/2

Aϕ

+
(
∂x ′

1
− i∂2

υ ′
1/2

)2
Aϕ − A2

ϕAϕ. (3.19)

Envelope equation (3.19) is an extension of the amplitude equation of Richter
(1973) and consequently has the same critical values of the control parameter for
local instability, i.e.:

rϕ,c = ρ2 cos2 ϕ. (3.20)

In other terms, the critical Rayleigh number depends on both the square of the
Reynolds number and the square of the cosine of the wavevector angle. All instability
modes, including TRs, are now of convective type at marginality. According to § 3.1,
no transition to absolute instability occurs when ϕ �= 0. For TRs, on the other hand,
equation (3.19) predicts such a transition. Indeed, proceeding as in § 3.1, the following
expression for the Green function associated with (3.19) is obtained in the particular
case ϕ = 0:

G
(
x ′

1, y
′
1/2, t2

)
= −exp(−iπ/4)

4πt2

(
x ′

1

t2
− ρc

)−1/2

exp

[{
r − ρ2

(
1 +

(c + η)2

4

)

− 1

2

x ′
1

t2

(
x ′

1

t2
− ρ

c + η

2

)}
t2

]
exp

[
i

(
4(

x ′
1

t2
− ρc)

)−1 (
y ′

1/2

t2

)2

t2

]
.

(3.21)

At sufficiently low positive values of r − ρ2, the instability is convective since the
growing part of the wave packet described by (3.21) is entirely contained between the
two rays given by x ′

1/t2 = ρ(c + η) ± 2(r − ρ2)1/2. Increasing r while holding ρ fixed
thus leads to a transition to absolute instability when r > ra with

ra − ρ2 = ρ2 (c + η)2

4
. (3.22)

4. Discussion
Including both streamwise and transverse wave propagation directions, the analysis

of § 3 has revealed the subtle behaviour of the linear impulse response of the RBP
system at low Reynolds numbers. The group velocity here being proportional to
the Reynolds number, it has allowed the complete determination of the convective
or absolute nature of any instability pattern. However, the reader is reminded that
the analysis is restricted to RB-like patterns slowly modulated by the through-flow.
Therefore, because of the absolute nature of the instability in the RB problem, the
absolute wavenumber is real at leading order, with a complex first-order correction.
Returning to figure 2, the Green function which, in the y ′

1/2-direction (i.e. the roll-
axis direction), remains a Dirac delta function located at a negative value of y ′

1/2/t2,
prevents any upstream propagation of the impulse response and thus any possibility of



164 Ph. Carrière, P. A. Monkewitz and D. Martinand

a convective/absolute transition, except for TRs. Owing to the singular nature of the
Green function, the determination of saddle-points of the dispersion relation becomes
singular as the y ′

1/2/t2-axis is approached, as only one saddle-point, corresponding
to the location of the Dirac delta function, subsists along this axis. The analytical
determination of the Green function, made possible in the simplified framework of
envelope formalism, clarifies our previous analysis of the general case (Carrière &
Monkewitz 1999), which used steepest descent techniques to evaluate the asymptotic
behaviour of the Green function and where the disappearance of the saddle-point for
x/t → 0 left some uncertainty about the effective behaviour of the Green function.
For the particular case of TRs, the present results are qualitatively in agreement with
the results of Müller et al. (1992), even though their envelope equation is different
from ours.

More generally, the study highlights the complexity of the competition between
LRs and TRs in the RBP system. On the one hand, for any non-zero value of the
Reynolds number, the smallest critical Rayleigh number for convective instability
always pertains to LRs. Furthermore, LRs are found to be a possible stable finite-
amplitude pattern. Owing to their convective nature, LRs are, however, expected in a
real experiment of finite length to appear as a result of spatial streamwise amplification
of external noise at the inlet. The critical Rayleigh number for convective instability
of TRs, on the other hand, is increasing with the square of the Reynolds number.
Nevertheless, as the TR instability becomes absolute for sufficiently high values of
the Rayleigh number, TR patterns can invade the entire RBP cell, including the
vicinity of the inlet, irrespective of the level of external noise in the experiment. This
is believed to explain the experimentally observed transition from LR to TR pattern
in RBP convection when the Rayleigh number is increased at a fixed low value of the
Reynolds number (see Luijkx et al. 1981; Ouazzani et al. 1989, 1990, 1995; Schröder
& Bühler 1995; Chang et al. 1997; Yu et al. 1997).

A more complete exploration of such a transition in the somewhat unrealistic
spatially homogeneous case would require interactions between TRs and LRs. Owing
to the disparity of the relevant spatial scalings, it is at this point not clear how
to include such interactions in the envelope equation formalism. Nevertheless, we
can compare the critical Rayleigh numbers for stability of finite-amplitude TRs with
respect to LRs, as given in § 1, and for the transition to absolute instability. Since both
the Rayleigh numbers are quadratic functions of the Reynolds number in the limit
studied, we show the ratio R2/R

2
1 as a function of the Prandtl number P in figure 3. It

first shows the rapid increase of the absolute Rayleigh number with P , in agreement
with our previous results (Carrière & Monkewitz 1999). Secondly, the stability curve
always stays below the convective–absolute transition which suggests that absolutely
unstable finite-amplitude TRs, are stable with respect to LRs. It is noted, however,
that this result is restricted to low Reynolds numbers. At larger R, there is no evidence
that the last conclusion remains true. Indeed, in most experiments no TR patterns
have been found at higher Reynolds number. Finally, rolls with arbitrary orientation
0 <ϕ < π/2 do not play a major role in this scenario, since such rolls are at most
convectively unstable like LRs, but have a smaller growth rate.

With the homogeneous case essentially clarified, the analysis has to be extended
to include spatial inhomogeneities in order to model real experiments better. A first
analysis of this kind has been carried out by Carrière & Monkewitz (2001) in the
framework of the Navier–Stokes equations for TRs varying slowly in the streamwise
direction (i.e. without transverse variation). Equation (3.19) now offers a simplified
framework to extend the so-called global mode analysis to the case of base states
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Figure 3. Ratio between the distance to the critical Rayleigh number R2 for TRs (dotted
line, finite-amplitude stability curve; solid line, convective–absolute transition) and the square
of the Reynolds number R1 as a function of the Prandtl number P .

which are varying slowly in both horizontal directions and give rise to roll patterns
with two wave-propagation directions. This program is the subject of Part 2.
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Appendix A. Successive solutions of the multiple scale analysis at finite R

In the following, the notation D = d/dz is used throughout.

A.1. Solution of the first-order problem

At first order, the set of linear homogeneous equations for v1 = [p1, u1, θ1]
T and its

associated eigenvalue −iω is given by

L0 v1 = 0, (A 1)

where L0 v1 is defined by

L0 v1 =
[
−∇0 · u1, −iωP −1u1 + R(Up ∂x0

u1 + DUp(u1 · ez)ex) + ∇0p1 − θ1ez

− ∇2
0u1, −iωθ1 + RPUp∂x0

θ1 − R(π/2)
c u1 · ez − ∇2

0θ1

]T
(A 2)

and ∇0 stands for

∇0 =
(
∂x0

, ∂y0
, ∂z

)T
. (A 3)

The boundary conditions for v1 in (A 1) are

u1(z = ± 1/2) = θ1(z = ± 1/2) = 0. (A 4)

For LRs as in (2.8), (A 1) reduces to the usual RB problem, except for a non-zero
component of the velocity in the x-direction. The z-dependence of LR modes is thus
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of the form

V 1 =
[
P1, Rk−2

c U1, ik−1
c V1, W1, Θ1

]T
, (A 5)

with W1 as originally determined by Pellew & Southwell (1940):

W1 =

n=3∑
n=1

Cn cosh qnz. (A 6)

In the present paper, we use the following numerically determined values for the
constants:

R(π/2)
c = 1707.76177, kc = 3.116323555, (A 7a)

C1 = 1.0, C2 = −0.0307641793 + i 0.0519556612, C3 = C2, (A 7b)

q1 = i 3.973704179, q2 = 5.194390868 − i 2.125870478, q3 = q2. (A 7c)

The functions V1, P1 and Θ1 are then deduced from W1 by the following relations:

V1 = DW1, (A 8a)

P1 =
(
k−2

c D2 − 1
)
V1(z), (A 8b)

Θ1 = k2
c

(
k−2

c D2 − 1
)2

W1(z). (A 8c)

The function U1 satisfies the equation:(
k−2

c D2 − 1
)
U1 = W1 DUp. (A 9)

The solution has the form:

U1 = D0 sinh(kcz) +

n=3∑
n=1

Enz cosh qnz + Fn sinh qnz, (A 10)

where En and Fn are given by

En = 8k2
cCn

(
k2

c − q2
n

)−1
, Fn = 16k2

c qnCn

(
k2

c − q2
n

)−2
(A 11)

and the value of D0 is determined by imposing U1(1/2) = 0.

A.2. Adjoint problem

Proceeding to higher orders in the expansion requires the determination of the adjoint
mode. In the present case, the appropriate scalar product is

〈vı , v 〉 = lim
X,Y→∞

1

4XY

∫ X

−X

∫ Y

−Y

∫ 1/2

−1/2

vı · v dx dy dz. (A 12)

With this definition, the adjoint operator of L0 in (A 1) is given by

L�
0v

�
1 =

[
−∇0 · u�

1, iωP −1 u�
1 − R

(
Up∂x0

u�
1 − DUp (u�

1 · ex)ez

)
+ ∇p�

1 − R(π/2)
c θ�

1 ez

− ∇2
0u�

1, iω θ�
1 − RPUp∂x0

θ�
1 − u�

1 · ez − ∇2
0θ

�
1

]T
. (A 13)

The eigenvalue −iω vanishes identically for longitudinal rolls at criticality and thus
we easily finds the adjoint longitudinal roll mode

v�
1 = exp(ikcy0)V �

1(z), (A 14)

where V �
1 is given by

V �
1 =

[
P1, 0, ik−1

c V1, W1, R(π/2)
c

−1
Θ1

]T
. (A 15)
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A.3. Second-order solvability condition

At O(ε2), the non-homogeneous problem for v2 = [p2, u2, θ2]
T is

L0v2 = S2(v1), (A 16)

where S2(v1) reads:

S2(v1) =
[
∇1 · u1, −P −1(∂t1 u1 + (u1 · ∇0)u1) − RUp ∂x1

u1 − ∇1p1 + 2 ∂y1
∂y0

u1,

− ∂t1θ1 − u1 · ∇0θ1 − RPUp ∂x1
θ1 + 2 ∂y1

∂y0
θ1

]T
(A 17)

and ∇1 stands for

∇1 = (∂x1
, ∂y1

, 0)T. (A 18)

The boundary conditions for v2 in (A 16) are

u2(z = ± 1/2) = θ2(z = 1/2) = 0, θ2(z = −1/2) = R2. (A 19)

Since LRs are stationary, the condition for the solvability of (A 16) reduces to

〈S2(v1), v�
1〉 = 0, (A 20)

which leads to

∂t1A + ∂kx
ω|c∂x1

A + ∂ky
ω|c∂y1

A, (A 21)

where we used the notation

∂kx
ω|c = ∂kx

ω|kx=0,ky=kc
, ∂ky

ω|c = ∂ky
ω|kx=0,ky=kc

. (A 22)

Note that quadratic interaction does, as usual, not provide any resonant terms in
(A 21). Since LRs are the most amplified modes, we have

∂kx
ωi |c = ∂ky

ωi |c = 0, (A 23)

and, since all modes with kx = 0 are stationary, we also have

∂ky
ωr |c = 0. (A 24)

On the other hand, the real part of the frequency is found to depend on the value of
kx , so that:

∂kx
ωr |c = Rc �= 0, (A 25)

which is consistent with the convective nature of LRs. The associated group velocity
is found to depend linearly on the Reynolds number R, with the coefficient c in (2.9)
given by

c = τ−1

∫ 1/2

−1/2

[(
k−2

c V 2
1 +

(
W 2

1 + P R(π/2)
c

−1
Θ2

1

))
Ub − k−2

c V1W1 DUp

]
dz

∼= τ−1(0.4718 + 1.375P ), (A 26)

and

τ = P −1

∫ 1/2

−1/2

[
k−2

c V 2
1 +

(
W 2

1 + P R(π/2)
c

−1
Θ2

1

)]
dz ∼= P −1(0.8012 + 1.566P ). (A 27)

A.4. Solution of the second-order problem

The solution v2 of (A 16) is sought in the form:

v2 = A2 V 2,2(z) exp(2ikcy0) +
(
∂χ1

A V 2,x(z) + ∂y1
A V 2,y(z)

)
exp(ikcy0)

+ 1
2
AAV 2,0(z) + 1

2

[
1
2
R2z(1 − z), 0, 0, 0, R2

(
1
2

− z
)]T

+ c.c., (A 28)
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where A depends on the variables χ1, y1 and t2 which are related to t1 and x1 by

∂t1 = −R c ∂χ1
, ∂x1

= ∂χ1
. (A 29)

In (A 28), V 2,2 is the column vector

V 2,2 =
[(

2Pk2
c

)−1(
V 2

1 − W1DV1

)
+ P2,2, (2kc)

−2RU2,2, ik−1
c V2,2, W2,2, Θ2,2

]T
, (A 30)

and V 2,0 is

V 2,0 =
[
P2,0, k−2

c RU2,0, 0, 0, Θ2,0

]T
. (A 31)

It then follows that W2,2 and Θ2,2 satisfy(
D2 − 4k2

c

)2
W2,2 − 4k2

cΘ2,2 = 2P −1(W1 D3W1 − DW1 D2W1), (A 32a)(
D2 − 4k2

c

)
Θ2,2 − R(π/2)

c W2,2 = W1 DΘ1 − Θ1 DW1, (A 32b)

and Θ2,0 satisfies

D2Θ2,0 = 2D(W1Θ1), (A 33)

which are similar to the equations in the absence of a mean through-flow.
Consequently, the solutions are those given by Schlüter et al. (1965). This is also
true for the remaining functions V2,2, V2,0, P2,2, P2,0. Furthermore, it is found that U2,2

and U2,0 do not provide resonant terms in the compatibility condition at third order,
so that their determination is unnecessary.

Similarly, we define V 2,x as the column vector

V 2,x =
[
Rk−2

c [(P −1c − Up)V1 + W1 DUp + P2,x], k−2
c

(
V1 + R2k−2

c U2,x

)
,

iRk−3
c (U1 + V2,x), Rk−2

c W2,x, Rk−2
c Θ2,x

]T
. (A 34)

The set of governing equations for W2,x and Θ2,x is thus obtained as(
k−2

c D2 − 1
)2

W2,x − k−2
c Θ2,x = (Up − P −1c)

(
k−2

c D2 − 1
)
W1 − k−2

c W1 D2Up, (A 35a)(
k−2

c D2 − 1
)
Θ2,x + k−2

c R(π/2)
c W2,x = P (Up − P −1c)Θ1, (A 35b)

and the solution W2,x is found to be

W2,x =

n=3∑
n=1

z(z2Gn,x + Hn,x) sinh(qnz) + (z2In,x + Cn,x) cosh(qnz). (A 36)

Eliminating Θ2,x in (A 35) allows us to determine the coefficients Gn,x , Hn,x and In,x as
functions of Cn, qn, kc, P and c. They are, however, not listed here, as the expressions
are too long. The Cn,x terms, finally, are obtained by imposing the boundary conditions

W2,x

(
1
2

)
= Θ2,x

(
1
2

)
= 0, (A 37)

and the orthogonality condition

n=3∑
n=1

CnCn,x = 0. (A 38)

Θ2,x is then obtained by relation (A 35a), and V2,x and P2,x by

V2,x = DW2,x, (A 39a)

P2,x =
(
k−2

c D2 − 1
)
V2,x . (A 39b)
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Next the unknown function U2,x is governed by(
k−2

c D2 − 1
)
U2,x = W2,x DUp + U1(Up − P −1c), (A 40)

and the solution U2,x may be written as

U2,x =

n=3∑
n=1

[(Jn,xz
4 + Kn,xz

2 + Ln,x) sinh qnz + z(Mn,xz
2 + Nn,x) cosh qnz]

+ z(J0,xz
2 + K0,x) cosh kcz + (L0,x + D0,x) sinh kcz. (A 41)

The coefficients in (A 41) are obtained by inserting (A 41) into (A 40) except for the
coefficient D0,x which is obtained by imposing U2,x(

1
2
) = 0.

Finally, we define V 2,y as the column vector

V 2,y = 2
[
ik−1

c

(
k−2

c D2V1 + P2,y

)
, iRk−3

c U2,y, −k−2
c (V1/2 + V2,y), ik−1

c W2,y, ik−1
c Θ2,y

]T
,

(A 42)

and the set of equations governing W2,y and Θ2,y is given, as in the absence of a mean
through-flow, by (

k−2
c D2 − 1

)2
W2,y − k−2

c Θ2,y = −
(
k−4

c D4 − 1
)
W1, (A 43a)(

k−2
c D2−

)
Θ2,y + k−2

c R(π/2)
c W

(y)
2 = −Θ1. (A 43b)

The solution W2,y is sought in the form

W2,y =

n=3∑
n=1

Hn,yz sinh qnz + Cn,y cosh qnz, (A 44)

where the coefficients Hn,y are obtained after eliminating Θ2,y in (A 43), and Cn,y is
determined in the same way as Cn,x . Θ2,y is then obtained from (A 43a) and V2,y and
P2,y from

V2,y = DW2,y, (A 45a)

P2,y =
(
k−2

c D2 − 1
)
V2,y . (A 45b)

The remaining function U2,y satisfies:(
k−2

c D2 − 1
)
U2,y = W2,y DUp − U1. (A 46)

It is sought in the form

U2,y =

n=3∑
n=1

[(Kn,yz
2 + Ln,y) sinh qnz + zNn,y cosh qnz]

+ zK0,y cosh kcz + D0,y sinh kcz, (A 47)

where the coefficients are obtained by inserting (A 47) into (A 46), except for D0,y

which is obtained by imposing the boundary condition U2,y(
1
2
) = 0.

A.5. Third-order solvability condition

At O(ε3), the following non-homogeneous problem for v3 = (p3, u3, θ3)
T is obtained

L0v3 = S3(v1, v2), (A 48)
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where S3(v1, v2) is given by

S3(v1, v2) =
[
∇1 · u2, −P −1

(
∂t2 u1 + u1 · ∇0u2 + u2 · ∇0u1 + u1 · ∇1u1

)
+R(P −1c − Up) ∂χ1

u2 − ∇1p2 + ∇2
1u1 + 2∂y1

∂y0
u2, −∂t2θ1

− u1 · ∇0θ2 − u2 · ∇0θ1 − u1 · ∇1θ1 + RP (P −1c − Up) ∂χ1
θ2

+∇2
1θ1 + 2∂y1

∂y0
θ2

]T
, (A 49)

with ∇1 now denoting

∇1 =
(
∂χ1

, ∂y1
, 0

)T
. (A 50)

Homogeneous boundary conditions are imposed at z = ±1/2 for u3 and θ3.
The envelope equation (2.12) is obtained from the solvability condition:

〈S3(v1, v2), v�
1〉 = 0. (A 51)

The various coefficients in (2.12) are given by

µ = R(π/2)
c

−1
∫ 1/2

−1/2

W1Θ1 dz, (A 52a)

ξ = 4

∫ 1/2

−1/2

[
W1(W1 − W2,y) + R(π/2)

c

−1
Θ1(Θ1 − Θ2,y) − k−4

c V2,y D2V1

]
dz, (A 52b)

α = k−2
c

∫ 1/2

−1/2

[P −1c − Up]
[
k−2

c V1V2,x + W1W2,x + P R(π/2)
c

−1
Θ1Θ2,x

]
dz

+ k−4
c

∫ 1/2

−1/2

V1W2,x DUp dz, (A 52c)

η = 2k−1
c

∫ 1/2

−1/2

[P −1c − Up]
[
k−2

c V1(V1 + V2,y) + W1W2,y + P R(π/2)
c

−1
Θ1Θ2,y

]
dz

+ 2k−1
c

∫ 1/2

−1/2

[
W1W2,x + R(π/2)

c

−1
Θ1Θ2,x + k−4

c V2,x D2V1

]
dz

+ 2k−3
c

∫ 1/2

−1/2

V1[W1 + W2,y] DUp dz. (A 52d)

Appendix B. The multiple scale analysis at infinitesimal R
B.1. Reynolds number of O(ε3/2)

The successive problems at O(ε), O(ε3/2) and O(ε2) are identical to those obtained in
the absence of through-flow. Thus, V 1,ϕ in (3.4) is given by

V 1,ϕ =
(
P1, ik−1

c V1, 0, W1, Θ1

)T
, (B 1)

with P1, V1, W1 and Θ1 as in Appendix A. The O(ε3/2) solution v3/2,ϕ is obtained as

v3/2,ϕ = ∂y ′
1/2

Aϕ exp
((

ikc(x
′
0 − R3/2 c cos ϕ t3/2

))[
0, k−2

c V1ey ′, 0
]T

+ c. c., (B 2)

and the O(ε2) solution v2,ϕ as

v2,ϕ = A2
ϕ V 2,2,ϕ(z) exp

(
2ikc

(
x ′

0 − R3/2 c cos ϕ t3/2

))
+

(
2ik−1

c ∂x ′
1
Aϕ V 2,x ′,ϕ(z)

+ k−2
c ∂2

y ′
1/2

Aϕ V 2,y ′,ϕ(z)
)
exp

(
ikc

(
x ′

0 − R3/2 c cosϕ t3/2

))
+ 1

2
AϕAϕV 2,0,ϕ(z) + 1

2

[
1
2
R2z(1 − z), 0, 0, 0, R2

(
1
2

− z
)]T

+ c. c., (B 3)
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where

V 2,2,ϕ =
[(

2Pk2
c

)−1(
V 2

1 − W1DV1

)
+ P2,2, ik−1

c V2,2, 0, W2,2, Θ2,2

]T
, (B 4a)

V 2,x ′,ϕ =
[
k−2

c D2V1 + P2,y, ik−1
c (V1/2 + V2,y), 0, W2,y, Θ2,y

]T
, (B 4b)

V 2,y ′,ϕ =
[
k−2

c D2V1 + P2,y, ik−1
c (V1 + V2,y), 0, W2,y, Θ2,y

]T
, (B 4c)

V 2,0,ϕ = [P2,0, 0, 0, 0, Θ2,0]
T, (B 4d)

with all scalar functions of z as defined in Appendix A.
At O(ε5/2), v5/2,ϕ = [p5/2,ϕ, u5/2,ϕ, θ5/2,ϕ]

T has to satisfy the following inhomogeneous
linear problem

L0,0v5/2,ϕ = S5/2

(
v1,ϕ, v3/2,ϕ, v2,ϕ

)
, (B 5)

where L0,0 is the linear operator L0 evaluated at R = 0 and S5/2(v1,ϕ, v3/2,ϕ, v2,ϕ) is
given by

S5/2 =
[
0, −P −1

(
∂t3/2

u1,ϕ + u1,ϕ · ∇′
0u3/2,ϕ

)
− ∂y ′

1/2
p2ey ′ − R3/2 Up cos ϕ∂x ′

0
u1,ϕ

− R3/2 DUp (u1,ϕ · ez)ex +
(
2∂x ′

1
∂x ′

0
+ ∂2

y ′
1/2

)
u3/2,ϕ, −∂t3/2

θ1,ϕ

− R3/2P Up cos ϕ ∂x ′
0
θ1,ϕ

]T
, (B 6)

with

∇′
0 =

(
∂x ′

0
, 0, ∂z

)T
. (B 7)

The solvability condition of (B 5) leads to a non-trivial equation which yields
the oscillatory behaviour of Aϕ on the time scale t3/2, with frequency given by
equation (3.4). The solution v5/2,ϕ is found to be

v5/2,ϕ = −ik−1
c Aϕ∂y ′

1/2
Aϕ V 5/2,2,ϕ(z) exp

(
2ikc

(
x ′

0 − R3/2 c cos ϕ t3/2

))
+

(
ik−1

c R3/2AϕV 5/2,x ′,ϕ(z) +
(
2k−2

c ∂x ′
1
∂y ′

1/2
Aϕ − ik−3

c ∂3
y ′

1/2
Aϕ

)
V 5/2,y ′,ϕ(z)

)
× exp

(
ikc

(
x ′

0 − R3/2 c cos ϕ t3/2

))
+ Aϕ∂y ′

1/2
Aϕ V 5/2,0,ϕ(z) + 1

48
∂y ′

1/2
R2

(
1
4

− z2
)(

1
2
z2 − z + 1

8

)
+ c. c., (B 8)

where

V 5/2,2,ϕ =
[
0, 0, ik−1

c V2,2, 0, 0
]T

, (B 9a)

V 5/2,x ′,ϕ =
[
(P −1c − Up)V1 + W1 DUp + P2,x) cos ϕ, ik−1

c V2,x cos ϕ,

ik−1
c U1 sin ϕ, W2,x cos ϕ, Θ2,x cos ϕ

]T
, (B 9b)

V 5/2,y ′,ϕ =
[
0, 0, ik−1

c (V1 + V2,y), 0, 0
]T

. (B 9c)

The determination of V 5/2,0,ϕ is not necessary for the present purpose.
Finally, at O(ε3), the inhomogeneous linear problem to be solved is

L0,0v3,ϕ = S3

(
v1,ϕ, v3/2,ϕ, v2,ϕ, v5/2,ϕ

)
, (B 10)

where S3(v1,ϕ, v3/2,ϕ, v2,ϕ, v5/2,ϕ) is given by

S3 =
[
∂x ′

1
(u2,ϕ · ex ′) + ∂y ′

1/2
(u5/2,ϕ · ey ′), −P −1

{
∂t2 u1,ϕ + ∂t3/2

u3/2,ϕ + u2,ϕ · ∇′
0u1,ϕ

+ u1,ϕ · ∇′
0u2,ϕ + (u1,ϕ · ex ′) ∂x ′

1
u1,ϕ +

(
u3/2,ϕ · ey ′

)
∂y ′

1/2
u1,ϕ

}
− ∂x ′

1/2
p2,ϕex ′

− ∂y ′
1/2

p5/2,ϕey ′ − R3/2 Up cos ϕ ∂x ′
0
u3/2,ϕ + R3/2 Up sin ϕ ∂y ′

1/2
u2,ϕ + ∂2

x ′
1
u1,ϕ
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+
(
2∂x ′

1
∂x ′

0
+ ∂2

y ′
1/2

)
u3/2,ϕ, −∂t2θ1,ϕ − u2,ϕ · ∇′

0θ1,ϕ − u1,ϕ · ∇′
0θ2,ϕ

− (u1,ϕ · ex ′) ∂x ′
1
θ1,ϕ −

(
u3/2,ϕ · ey ′

)
∂y ′

1/2
θ1,ϕ − R3/2P Up sin ϕ ∂y ′

1/2
θ1,ϕ

+ ∂2
x ′

1
θ1,ϕ +

(
2∂x ′

1
∂x ′

0
+ ∂2

y ′
1/2

)
θ2,ϕ

]T
. (B 11)

The solvability condition for (B 10) then leads to the envelope equation (3.5).

B.2. Reynolds number of O(ε)

For R = O(ε), the problems at O(ε) and O(ε3/2) remain identical to those given
in Appendix B.1. At O(ε2), however, the solution v′

2,ϕ must be modified to include
Reynolds-dependent terms:

v′
2,ϕ = v2,ϕ + ik−1

c R1AϕV 5/2,x ′,ϕ(z) exp(ikc(x
′
0 − R1 c cos ϕ t1)), (B 12)

where the same notation is used as in the previous section. At O(ε5/2), the right-hand
side of the linear, inhomogeneous problem for v′

5/2,ϕ becomes

S′
5/2 =

[
∂y ′

1/2
(u′

2,ϕ · ey ′), −P −1
(
∂t3/2

u′
1,ϕ + u′

1,ϕ · ∇′
0u′

3/2,ϕ + ∂t1 u
′
3/2,ϕ

)
− ∂y ′

1/2
p′

2ey ′

+ R1 Up sin ϕ ∂y ′
1/2

u′
1,ϕ − R1 Up cos ϕ ∂x ′

0
u′

3/2,ϕ +
(
2∂2

x ′
1
∂x ′

0
+ ∂2

y ′2
1/2

)
u′

3/2,ϕ,

− ∂t3/2
θ ′
1,ϕ + R1P Up sin ϕ ∂y ′

1/2
θ ′
1,ϕ

]T
. (B 13)

The solvability condition yields the following equation for the envelope Aϕ

∂t3/2
Aϕ = R1 c sin ϕ ∂y ′

1/2
Aϕ, (B 14)

with its solution given by (3.16). Then, v′
5/2,ϕ is found as

v′
5/2,ϕ = −ik−1

c Aϕ∂υ ′
1/2

Aϕ V 5/2,2,ϕ(z) exp(2ikc(x
′
0 − R1 c cos ϕ t1))

+ k−2
c

(
− R1 V ′

5/2,x ′,ϕ(z) +
(
2∂x ′

1
− ik−1

c ∂2
υ ′

1/2

)
V 5/2,y ′,ϕ(z)

)
∂υ ′

1/2
Aϕ

× exp(ikc(x
′
0 − R1 c cos ϕ t1)) + Aϕ∂υ ′

1/2
Aϕ V 5/2,0,ϕ(z)

+ 1
48

∂υ ′
1/2

R2

(
1
4

− z2
)(

1
2
z2 − z + 1

8
) + c. c., (B 15)

with

V ′
5/2,x ′,ϕ =

[
(P −1c − Up)V1 + W1 DUp + P2,x) sin ϕ, ik−1

c (V2,x + U1) sin ϕ,

− ik−1
c (V2,x + U1) cos ϕ, W2,x sin ϕ, Θ2,x sin ϕ

]T
. (B 16)

Finally, at O(ε3), the right-hand side of the linear, inhomogeneous problem is

S′
3 =

[
∂x ′

1
(u′

2,ϕ · ex ′) + ∂υ ′
1/2

(
u′

5/2,ϕ · ey ′
)
, −P −1

{
∂t2 u

′
1,ϕ + ∂t1 u

′
2,ϕ + u′

2,ϕ · ∇′
0u′

1,ϕ

+ u′
1,ϕ · ∇′

0u′
2,ϕ +

(
u′

1,ϕ · ex ′
)
∂x ′

1
u′

1,ϕ +
(
u′

3/2,ϕ · ey ′
)
∂υ ′

1/2
u′

1,ϕ

}
− ∂x ′

1
p′

2,ϕ ex ′

− ∂υ ′
1/2

p′
5/2,ϕ ey ′ − R1(P

−1c − Up) sin ϕ ∂υ ′
3/2

u′
3/2,ϕ − R1 Up cos ϕ

(
∂x ′

0
u′

2,ϕ

+ ∂x ′
1
u′

1,ϕ

)
+ R1 DUp (u′

2,ϕ · ez)ex + ∂2
x ′

1
u′

1,ϕ +
(
2∂x ′

1
∂x ′

0
+ ∂2

υ ′
1/2

)
u′

3/2,ϕ,

− ∂t2θ
′
1,ϕ − ∂t1θ

′
2,ϕ − u′

2,ϕ · ∇′
0θ

′
1,ϕ − u′

1,ϕ · ∇′
0θ

′
2,ϕ − (u′

1,ϕ · ex ′) ∂x ′
1
θ ′
1,ϕ

−
(
u′

3/2,ϕ · ey ′
)
∂υ ′

1/2
θ ′
1,ϕ − R1P Up cos ϕ

(
∂x ′

1
θ ′
1,ϕ + ∂x ′

0
θ ′
2,ϕ

)
+ ∂2

x ′
1
θ ′
1,ϕ

+
(
2∂x ′

1
∂x ′

0
+ ∂2

υ ′
1/2

)
θ ′
2,ϕ

]T
, (B 17)

from which the envelope equation (3.17) is deduced.
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Müller, H. W., Lücke, M. & Kamps, M. 1992 Transversal convection patterns in horizontal shear
flow. Phys. Rev. A 45, 3714–3726.

Newell, A. C. & Whitehead, J. A. 1969 Finite bandwidth, finite amplitude convection. J. Fluid
Mech. 38, 279–303.

Ostrach, S. & Kamotani, Y. 1975 Heat transfer augmentation in laminar fully developed channel
flow by means of heating from below. J. Heat Transfer 97, 220–225.

Ouazzani, M. T., Catalgirone, J. P., Meyer, G. & Mojtabi, A. 1989 Etude numérique et
expérimentale de la convection mixte entre deux plans horizontaux à températures différentes.
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